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Chapter 1

Introduction and Motivation

Integrable models are exactly solvable models of many-body systems inspired from statisti-
cal mechanics or solid state physics. They are usually the result of some simplifications and
approximations of a real-world physical system. As these models describe things made up
of atoms, they are inherently discrete (lattice models). With some exceptions, most known
integrable models are however one-dimensional, which means that we have quite some
way to go before we can solve realistic systems. The models we can solve fully are a bit like
very simple table-top experiments. By studying these systems, we hope to gain valuable
tools for tackling more complicated systems.

The concept of integrability shows up in the context of classical mechanics, classical
field theory (e.g. classical sine-Gordon model), but also in conjunction with combinatorial
objects, such as for example triangulations, trees, tilings, alternating sign matrices, and
plane partitions. Integrable models are also relevant for the high energy physicist, as they
are intimately connected to supersymmetric quantum field theories and string theory.

In these lectures, we will focus largely on one class of quantum integrable models,
namely spin chains.

In 1931, Hans Bethe solved the xxX;,, or Heisenberg spin chain. His ansatz can
be generalized to many more systems and is the basis of the field of integrable systems.
Colloquially, people often equate “Bethe-solvable” with “integrable”, but the set of integrable
models is marginally bigger.

The example with which we will start our journey is the one of a 1d ferromagnet. Here,
one studies a linear chain of L identical atoms with only next-neighbor interactions. Each
atom has one electron in an outer shell (all other shells being complete). These electrons
can either be in the state of spin up (1) or down ({). At first order, the Coulomb- and
magnetic interactions result in the exchange interaction in which the states of neighboring
spins are interchanged:

™ e I (1.1

In a given spin configuration of a spin chain, interactions can happen at all the anti-parallel
pairs. Take for example the configuration

LT (1.2)

It contains five anti-parallel pairs on which the exchange interaction can act, giving rise to
five new configurations.

For simplicity, we will be studying the periodic chain. Bethe posed himself the question
of finding the spectrum and energy eigenfunctions of this spin chain. We will study his ansatz
in detail in the next chapter. His method is a little gem and studying it is bound to lift the
morale of any theoretical physicist!
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Chapter 1. Introduction and Motivation

L-1L 12

Figure 1.1: Periodic spin chain

There are many generalizations to this simplest of all spin chains which can still be
solved by versions of Bethe’s ansatz:

* different boundary conditions: periodic, anti-periodic, open, kink, ....

* anisotropic models: xXz chain, where the z-direction is singled out by a magnetic
field in this direction; XYz model.

* different choice of symmetry algebra. The spin 1/2 spin chain corresponds to su(2),
but any Lie algebra or even super-algebra can be chosen instead.

* for the rank of the symmetry algebra r > 1, there are more particle species on the
chain, e.g. 1, |, o (hole) of the tJ-model, where 1, | are fermionic while o is bosonic.

* each site of the spin chain can carry a different representation of the symmetry algebra.
* on each site another parameter, the so-called inhomogeneity can be turned on.

We still start this lecture series with Bethe’s original treatment of the XXX, /, spin chain,
the so-called coordinate Bethe ansatz. It has the virtue of being very intuitive and will give
us a good understanding of the physics of the spin chain. Its drawback is that it cannot
be generalized very much. We will therefore graduate to the more abstract, but much
more powerful algebraic Bethe ansatz after we have finished with the simple case at hand.
Here, we will rederive the XxX; /, case by algebraic means and then generalize it to general
spin s. I will also briefly sketch further generalizations, such as spin chains with higher
rank symmetry algebra. Towards the end of this lecture series, I will cover some of the
relations between integrable models and supersymmetric gauge theories which are relevant
for particle physics, in particular the gauge/Bethe correspondence.

The field of integrable models is very rich and there are many more interesting models
and complementary ways of studying them that would deserve our attention, but in this
short course, we have to content ourselves with the topics outlined above.

AEC Bern WS 2014 2



Chapter 2

The coordinate Bethe ansatz

As discussed in the introduction, we want to find the energy eigenfunctions and eigenvalues
of a 1d magnet. Consider a closed chain of identical atoms with each one external electron
which can be in the state of spin up or down and only next-neighbor interactions — the
XXX1 /7 spin chain. Its Hamiltonian (Heisenberg 1926) is given by

L
H=-]) I, (2.1)
n=1

where | is the exchange integra and IT, . is the permutation operator of states at
positions 1, n + 1. Let us write down the spin operator at position 7 on the spin chain:

gn = (S, S%, Sh) = %(_7’}1, (2.2)

where 0, are the Pauli matrices for spin 1/2:

ol = <(1) é) , o’ = (? BZ) , o= <é _01> . (2.3)
In terms of the spin operators, the permutation operator is given by
L1 = —5(1+ Fulni1). (2.4)
In terms of the spin operators, the Hamiltonian becomes

—

nsn+1

L
=
L

H =

3
Il
—_

(2.5)

I

|
~
1=
ST

(S4Sui1+5uS1) +SiSii,

3
Il
—_

where ST = S¥ 4 iS;, are the spin flip operators. The term in parentheses corresponds to
the exchange interaction which exchanges neighboring spin states.
The spin flip operators act as follows on the spins:

Sfl... 1. =0, SEl by =] 1),
Sclooto =]l Sl l...)=0, (2.6)
St =), Sy ==Y )

1_J > 0: ferromagnet, spins tend to align, —] < 0: anti-ferromagnet, spins tend to be anti-parallel.
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Chapter 2. The coordinate Bethe ansatz

The spin operators have the following commutation relations:
S2,85] = £S5 6w, [S),S,] = 2520, 2.7)
For the closed chain, the sites n and #n + L are identified:
Sit1 =251 (2.8)

So far, we have discussed the isotropic spin chain. In the anisotropic case, a magnetic field
is turned on in the z-direction:

L
Ha=—] ) S3Sii1+SuSy 1+ A(S:Sr0 — 3)- (2.9)
n=1

This is the xXz spin chain. A is the anisotropy parameter, where A = 1 is the isotropic case.
The most general model in this respect is the XYz spin chain:

L
Har ==Y J«SiShiqn + JySnSh .1 + 2S5S541. (2.10)
n=1

It has two anisotropy parameters A, I' which fulfill the ratios

In the following, we will however concentrate on the isotropic case.
Let us define the ferromagnetic reference state

[ . 1) = 1Q). (2.12)

H acts on a Hilbert space of dimension 2F, given that each site on the chain can be in one
of two states, which is spanned by the orthogonal basis vectors

Q(n1, ..., 1x)) = Sy - Sy ), (2.13)

which are vectors with N down spins (0 < N < L) in the positions ny, ..., ny, where we
always take 1 < ny <np < --- <ny < L.

In order to diagonalize the Heisenberg model, two symmetries will be of essential
importance:

* the conservation of the z—component of the total spin,
L
[H,§*] =0, $*=)_5;. (2.14)
n=1

This remains also true for the Xxz spin chain Hamiltonian Hj.

* the translational symmetry, i.e. the invariance of H with respect to discrete trans-
lations by any number of lattice spacings. This symmetry results from the periodic
boundary conditions we have imposed.

As the exchange interaction only moves down spins around, the number of down spins in
a basis vector is not changed by the action of H. Acting with H on |Q)(n4,...,ny)) thus
yields a linear combination of basis vectors with N down spins. It is therefore possible to
block-diagonalize H by sorting the basis vectors by the quantum number S* = /2 — N.

AEC Bern WS 2014 4



Chapter 2. The coordinate Bethe ansatz

Let us start by considering the subsector with N = 0. It contains only one single basis
vector, namely |()), which is an eigenvector of H as there are no antiparallel spins for the
exchange interaction to act on:

H|Q) = Eo|Q), Eo=—JE. (2.15)

Next we consider the sector with N = 1. As the down spin can be in each of the lattice
sites, this subspace is spanned by

(1)) = 5, 1Q2). (2.16)

In order to diagonalize this block, we must invoke the translational symmetry. We can
construct translationally invariant basis vectors as follows:

L
) = \%nzleik"m(n)), k="—,m=0,1,...,L—1. (2.17)

The |¢) with wave number k are eigenvectors of the translation operator with eigenvalue
¢’* and eigenvectors of H with eigenvalues

E=—J(t—1—cosk), (2.18)

or in terms of Ey,
E—Ey=]J(1— cosk). (2.19)

The |¢) are so-called magnon excitations: the ferromagnetic ground state is periodically
perturbed by a spin wave with wave length 277/k.

So far, we have block-diagonalized H and diagonalized the sectors N = 0, 1 by symmetry
considerations alone. The invariant subspaces with 2 < N < L/2 however are not
completely diagonalized by the translationally invariant basis.

In order to remedy this situation, we will now study Bethe’s ansatz, again for the case
N=1.

Bethe ansatz for the one-magnon sector. We can write the eigenvectors of H in this

sector as
L

[¥) = ) a(n)|Q(n)). (2.20)

n=1
Plugging this into the eigenvalue equation results in a set of conditions for a(n):

JL

2 [E + 4] a(n) =J[2a(n)—a(n—1)—an+1)], n=12,...,L. (2.21)

On top of this, we have the periodic boundary conditions
a(n+L)=a(n). (2.22)
The L linearly independent solutions to the difference equation Eq. (2.21]) are given by

. 2
a(n) =", k= Tnm, m=01,...,L —1. (2.23)
Little surprisingly, these are the same solutions we had found before. But now we can apply

the same procedure to the case N = 2.
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Chapter 2. The coordinate Bethe ansatz

Bethe ansatz for the two-magnon sector. This invariant subspace has dimension L(L —
1)/2. We want to determine a(n1, ny) for the eigenstates of the form

)y =Y. a(n,n)|Q(n,n)). (2.24)

1<n<np<L
Bethe’s preliminary ansatz is given by
ﬂ(nl, 7”!2) — Aei(k1n1+k2n2) + A/ei(k1nz+k2n1). (225)

The first term is called the direct term and represents an incoming wave, while the second
term is called the exchange term and represents an outgoing wave. Indeed, the expression
looks like the superposition of two magnons, however, the flipped spins must always be in
different lattice sites. Asymptotically, we can only have the direct and exchange terms for
two magnons. Bethe’s ansatz postulates that this asymptotic form remains true in general.

Let us now plug the eigenstates |i) of the form given in Eq. into the eigenvalue
equation. There are two cases to consider separately, namely the two down spins not being
adjacent, and the two down spins being adjacent:

2(E—Ep)a(ny,ny) = J[4a(ny,ny) —a(ny —1,n) —a(ny +1,ny) (2.26)
—a(ny,ng —1) —a(ny,ny+1)], ny>n+1,

2(E — Ep)a(ny,ny) = J [2a(ny,n2) —a(ny — 1,n2) —a(ny,np +1)], np=mn;+1.
(2.27)

Equations (2.26)) are satisfied by a(n1, 1) of the form Eq. (2.25) with arbitrary A, A’, kq, k»
for both n, > ny + 1 and ny = ny + 1 if the energies fulfill

E—Ey=] Z (1-— coskj). (2.28)
=12

Equation (2.27) on the other hand is not automatically satisfied. Subtracting equa-
tion (2.27) from equation (2.26) for the case n, = n; + 1 leads to L conditions, known as
the meeting conditions:

2a(ny,m +1) =a(ny,m) +alng+1,n,+1). (2.29)

Clearly, the expressions a(#1,11) have no physical meaning, as the two down spins cannot
be at the same site, but are defined formally by the ansatz Eq. (2.25). Thus the a(n7, 1)

solve Eq. (2.26)), (2.27) if they have the form Eq. (2.25) and fulfill Eq. (2.29). Plugging
Eq. (2.25) into Eq. (2.29) and taking the ratio, we arrive at
A i ei(k1+k2) +1— 2eik1

e = TR 1 2k (2.30)

We see thus that as a result of the magnon interaction, we get an extra phase factor in the

Bethe ansatz Eq. (2.25)):

(Z(Tll nZ) — ei(k1n1+k2nz+%612) _’_ei(k1n2+k2n1+%021) (2.31)
where 61, = —6,1 = 0, or written in the real form,
2cotf/2 = cotky/2 — cotky, /2. (2.32)

k1, ko are the momenta of the Bethe ansatz wave function. The translational invariance of

),
a(ny,np) = a(ny,ny + L) (2.33)
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Chapter 2. The coordinate Bethe ansatz

is satisfied if
elk1L _ 819, elkzL — 3*19/ (2.34)

which, after taking the logarithm, is equivalent to
Lki =2mA1+60, Lky=2mA,+96, (2.35)
where A; € {0,1,...,L — 1} are the Bethe quantum numbers which fulfill
k=ki+k =2 +Ay). (2.36)

We have seen that the expression for the energies, Eq. (2.28), is reminiscent of two
superimposed magnons. The magnon interaction is reflected in the phase shift 6 and the
deviation of the momenta ki, k, from the one-magnon wave numbers. We will see that
the magnons either scatter off each other or form bound states. In the following lectures,
we will be mostly interested in the form of the Bethe equations themselves, and not so
much in their explicit solutions. But before treating the general N magnon case, we will
nonetheless quickly review the properties of the Bethe eigenstates for N = 2

We need to identify all pairs (Al, Ay) that satisfy the Bethe Equatlons 2.32) and (2.35 -
Allowed pairs are restricted to 0 < A; < A, < L — 1. Switching A; with A, 1nterchanges k1
and k, and leads to the same solution. L(L + 1) /2 pairs meet the restriction, however only
L(L —1)/2 of them produce solutions, which corresponds to the size of the Hilbert space.
There are three distinct classes of solutions:

1. One of the Bethe quantum numbers is zero: A1 =0, A; =0,1,...,L — 1. There exists
a real solution for all L combinations k1 = 0, k; = 27wA,/L, 8 = 0. These solutions
have the same dispersion relation as the one-magnon states in the subspace N = 1.

2. A;, Ay # 0, Ay — Ay > 2. There are L(L —5)/2 + 3 such pairs and each gives a
solution with real kq, k. These solutions represent nearly free superpositions of two
one-magnon states.

3. A1, Ay #0, Ay, Ay are either equal or differing by unity. There are 2L — 3 such pairs,
but only L — 3 yield solutions. Most are complex, k1 := k/2+iv, ky :=k/2—1iv, 0 :=
¢ +ix. These solutions correspond to two-magnon bound states. They exhibit an
enhanced probability that the two flipped spins are on neighboring sites.

The number of solutions adds up to the dimension of the Hilbert space. The first and
second class of solutions correspond to two-magnon scattering states.

Bethe ansatz for the N-magnon sector. We are finally ready to tackle the general
case with an unrestricted number N < L of down spins. This subspace has dimension
L!/((L — N)!N!). The eigenstates have the form

lp) = Y. a(ny, ..., nN)|Q(ny,...,nN)). (2.37)

1<n;<---<ny<L

Here, we have N momenta k; and one phase angle 6;; = —0;; for each pair (k;, k;). The
Bethe ansatz now has the form

a(ny, ..., nNy) = Z exp( Zk 229 ) (2.38)

PeSy i<j
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Chapter 2. The coordinate Bethe ansatz

where P € Sy are the N! permutations of {1,2,..., N}. From the eigenvalue equation, we
again get the two kinds of difference equations (the first for no adjacent down spins, the
second for one pair of adjacent down spins),

N
2[E—Eola(n,...,nn)=TY, Y [a(ni,...,nN) —a(m, ... nie, ..., nN)], (2.39)
i=1o=%1

ifnj+1 >nj—|—1, j:1,...,N,
N

2[E—Eola(m,...,nn) =] Y, Y la(n,...,nn)—a(n, ... nite,...,nN)] (2.40)
i#jajat10=%1

+]Z[2a(n1,...,nN) —a(nl,...,n]-k — 1,1’1]"X+1,...,1’1N)
«

—a(ny,...,nj,nj1+1,...,nn8)],

if nj,+1=mnj41, njy1 >nj+1,j # Ja-

The coefficients a(ny, ..., ny) are solutions of Equations (2.39), (2.40) for the energy

5=

Il
—_

E—Ey=]) (1—-cosk;) (2.41)

]

if they have the form Eq. (2.38) and fulfill the N meeting conditions

2a(ny, ..., nj,n, +1,...,ny) = a(ny,...,nj,n,...,ny)
+a(ny,...,n, +1,n, +1,...,ny), (2.42)

fora =1,...,N. This relates the phase angles to the (not yet determined) k;:

S0y _ _i::; i 1 :;z; (2.43)
or, in the real form
2 cott;j/2 = cotk;/2 — cotk;/2, i,j=1,...,N. (2.44)
Translational invariance, respectively the periodicity condition
a(ny,...,ny) =a(ny, ..., ny,n;+L) (2.45)

gives rise to

N 1 1 B N
2 Ko+ 5 2 Bpip() = 5 Oy ) — 2Ap) + ;kp'o‘—l)”j +kyny (m + L),
= l<] l<] j=

(2.46)

where p'(i—1) = p(i), i = 1,2,...,N and p/(N) = p(1). All terms not involving
p'(N) = p(1) cancel, we are therefore left with N relations

Lk; = 27‘(}\1' + 291']', (2.47)
J#

withi=1,...,Nand A, € {0,1,...,L —1}. We need to again find sets of Bethe quantum
numbers (A, ..., Ay) which lead to solutions of the Bethe equations (2.43), (2.47). Each
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Chapter 2. The coordinate Bethe ansatz
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Figure 2.1: Two-body reducible chain

solution represents an eigenvector of the form Eq. (2.38)) with energy (2.41) and wave
number

2o &
k= T 1:21 Aj. (2.48)

Similarly to the two magnon case, bound state solutions appear, this time also with three
Or more magnons.

In order to find a clear interpretation of the Bethe ansatz, let us rewrite the N—particle

ansatz Eq. (2.38)) as follows:

) N
a(my,...,nn) = ), exp <£ Zepa)p(n) exp (l ka)”j)
j=1

PeSn i<j
w (2.49)
= ), Alkpy--- ko)) exp <1ka(j>”f> :
PeSn j=1
The coefficient A(ky ), - - -, k,(n)) factorizes into pair interactions:
Alkpay k) = T e2%. (2.50)

1<i<j<N

We have seen that the two-body interactions are not free, they have a non-trivial scattering
matrix. The many-body collisions factorize, which means they happen as a sequence of two
magnon collisions. All Bethe-solvable systems are thus two-body reducible. This property
has to do with the fact that a spin chain is one-dimensional, so only neighboring down spins
can interact directly (see Fig.[2.1). There are in fact very few two-dimensional systems that
are exactly solvable.

To conclude this part, we will re-write the Bethe equations to give them a form which
is more commonly used in the literature and which we will need in the last part of this
lecture series. First, we introduce new variables, the so-called rapidities A;:

ehi="1 -2 (2.51)
Aj—3
Plugging them into the periodicity condition, we get
-\ L
Aj+ 5 N oA — A+
(@) =]l5—— i=1L...N (2.52)
A2 A T

This Bethe equation encodes the periodic boundary condition. In can be generalized to
boundary conditions with a twist ¢,

c ilhf G —iﬂa
SL+1 =e2 2516 2°7% (2.53)
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Chapter 2. The coordinate Bethe ansatz

i\ L
Ai+ 4 o N A — A+
T2 = [, i=1,...,N. (2.54)
Ai=3 i M A

The Bethe ansatz as it was presented in this lecture follows Bethe’s original treatment and is
referred to as the coordinate Bethe ansatz. It has the advantage that its physics is intuitively
very clear. It can be generalized to the xxz spin chain, but not much beyond that. The
so-called algebraic Bethe ansatz is mathematically more elegant and much more powerful.
It uses concepts such as the Yang-Baxter equations, the Lax operator and the R-matrix and
relies heavily on the machinery of Lie algebras and beyond. We will tackle it in the next
chapter.

As a last remark, we make the non-trivial observation that the Bethe equations (2.54)
describe the critical points of a potential, the so-called Yang—Yang counting function Y. We
can rewrite the Bethe equations as

e2mio(A) — 1, (2.55)

The one-form @ = Z]-I\il @;(A)dA; is closed and @ = dY, with

L N 1 N N "
Y(A) = E ;x(Z)\i) — E ijglx()\i - )\]‘) —I-]; )\]‘ <1”l]‘ — 27_[> ’ (2.56)
£(A) = A4 (log(1 — ) ~log(1+ 1)) + Llog(1+A?), (2.57)

where the n; are integers. The Bethe equations thus ultimately take the form

YN = 1, (2.58)
The xxz chain and SU,(2). Remember the Hamiltonian of the anisotropic xxz spin chain,
L
Hy=~] ) SiSii1 +SnSyq + A(S:S 1 — 5)- (2.59)
n=1

The anisotropy is captured by the parameter

_q+1/q

A
2

(2.60)

While A = 1 is the isotropic case we have treated so far, the limit A = oo corresponds to
the one-dimensional Ising model. The xxz chain described by the Hamiltonian (2.59) can
be mapped to a two-dimensional combinatorial model, the six-vertex or ice-type model.

It was first realized by Pasquier and Saleur that the xxXz spin chain admits the group
SU,(2) (alternative notations are U, [su(2)] and U,(sl2)) as symmetry group. This is an
example of a quantum group, in the sense that it is a deformation by a parameter g.
Quantum groups have a Hopf-algebra structure, which is also the case here.

SU,(2) is generated by S*, S~ and g*5” under the relations

262 26z
S g gtigE 5*,57] = - -9 (2.61)

1 q—1/q
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Chapter 2. The coordinate Bethe ansatz

These relations reduce to the ones of SU(2) for ¢ — 1. For the case of spin 1/2, we find
the following representations for the operators:

qu _ qa3/2 QR ® qoﬁ/zl (2.62)
L
3 s e e e
StF=Ysr=Y ¢ e 0P /20qg " ?0 09", (2.63)
i=1 i=1

i—1

where we have the Pauli matrices

— (8 é) , o= <(1) 8> , o = (é _01> ) (2.64)

A _(q9 0
q° = <0 1/q>. (2.65)

Since Hy also commutes both with SZ and the translational operator, the Bethe ansatz
works the same as for the xxx chain.
Exercise: Rederive the coordinate Bethe ansatz for Hp.

and

Literature. This chapter follows largely [1]], which itself follows Bethe’s original work [2].
The first chapter of [3] is also very useful as an introduction. The supergroup structure of
the xxz chain is discussed in [4].
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Chapter 3

Introduction to the Algebraic Bethe
Ansatz

"Working with integrable models is a delightful pastime."

L.D. Faddeev

The algebraic Bethe ansatz (ABA) is an algebraic way of deriving the Bethe ansatz
equations. It is also called the quantum inverse scattering method and was developed in the
late seventies and early eighties by the so-called Leningrad School (proponents of which
include Faddeev, Izergin, Korepin, Kulish, Reshetikhin, Sklyanin and Takhtajan).

We are about to uncover the mathematical reason for the integrability of the xxz; ,,
spin chain, the underlying reason why Bethe’s original ansatz works. As we will see, the
su(2)-symmetry and translation invariance of the XXz, /, spin chain, which have already
proved instrumental in Bethe’s original solution, are merely the tip of the iceberg. We are
about to find an infinite dimensional symmetry (or rather L-dimensional for a finite chain
of length L, which remains valid for L. — o).

For the time being, we will remain with our (by now) good old friend, the xxz;,, spin
chain. Recall that we have a closed chain with L sites. Its Hilbert space has the form

L
H=QQQMHn Ha=C. (3.1)

For now discounting the prefactor of —] and introducing the constant —1/4 which sets the
vacuum energy to zero, we write the Hamiltonian as

3 L
ZZE 1= 1) (3.2)

where the spin operators are as before S* = 1¢* and H fulfills [H, $*] = 0 and S* = Sh-
The fundamental object of the ABA is the Lax operator, a generating object that takes its
name from the Lax operator used in the solution of the KdV equation. In order to define
it, we must introduce the auxiliary space V which for the time being is also C2, and a
continuous complex parameter A, the spectral parameter. This parameter will allow us later
on to recover the integrals of motion as coefficients of a series expansion in A. The auxiliary
space V on the other hand is needed to show that the integrals of motion commute. The
Lax operator acts on H, ® V:

3
Lia(A) =Al, @1, 41 ) St ®0o", (3.3)

a=1
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Chapter 3. The Algebraic Bethe Ansatz

where the labels n refer to #, while the labels a refer to V. Alternatively, we can express
the V-dependence of L explicitly by writing L as a 2 x 2 matrix:

_(A+iS3 S,

Lyq(A) = < ist A—isd) (3.4)

We can write L, ,(A) in yet another form using the fact that the operator

2
1= %(Il—i— ZU”‘@U”‘) (3.5)
a=1
is the permutation operator on C? x C2. Since H,, and V are the same,

Lya(A) = (A= 5o + i1, (3.6)

Let us now establish the main property of the Lax operator, namely the commutation
relations for its entries. In order to take the commutator, we consider two Lax operators
Lya (A), Lyg, (M) acting on the same Hilbert space but different auxiliary spaces Vi, V5.
The product Ly, 4, (A)Ly,4,(A) acts on the space H, ® V; ® V,. We now make the claim that
there exists an operator R,, 4,(A — p) in ®V; ® V5 such that the following relation is true:

Rﬂl/ﬂz ()\ - V)L”/Fh (A)L”/flz(l’l) = Ln,ﬂz(y)Lﬂ,ﬂl ()‘)Rﬂhﬂz (A - ,u) (3'7)

This is the fundamental commutation relation (FCR) for L, it has the form of a Yang—Baxter
equation (YBE). The operator R, called the R—matrix acts as an intertwiner. The explicit
expression for R is given by

Ray 0 (A) = Ay + i1, ,. (3.8)

We see that L and R have the same form, in fact .

Exercise: Verify Eq. (3.7) using the explicit expressions for L and R and the relation
Hn,al Hn,az = Hal,aznn,al = Hn,aZHZZ,al- (39)

We can also write the Yang-Baxter equation only in terms of R, which gives it a form more
familiar from other contexts:

Ra1,ﬂ2 (;\ - ﬁ)Rﬂm (Z)Rn,az (ﬁ) = Rﬂ,ﬂz (ﬁ)Rﬂm (X)Rﬂlﬂz (;\ - .ﬂ)/ (3'10)

where A = A +i/2, i = u+1i/2.

We can represent the YBE diagrammatically. L, , acts on two different types of space, so
we depict it as the crossing of two lines of different color. R,, 5, on the other hand acts on
the same type of space and is depicted as the crossing of two a-lines.

- n line ai

a line ap

The product Ly, 4, (A)Ly,q, (1) acts on two a-lines and one n-lines:
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a I

1

Lyay (M) Lia, (1) = E

an ;

n 1

Below, the RHS and LHS of the YBE are depicted:
a, ' as 5 : az
1 1

an : ay an : aq

n n

The YBE also shows up in the context of knot theory and the braid group, where it states
that two ways of switching the strands are equivalent. More importantly for us, the YBE
has a physical interpretation in terms of scattering processes. For a scattering matrix of
two on-shell particles which allows only the direct (i.e. the identity) and the reflection
scattering processes, the multiple particle scattering factorizes into pairwise scattering
processes. If you replace R by the scattering matrix S in Eq. (3.10), it encoded the fact that
in the three-particle scattering, the order of the two-particle interactions does not matter.
This is also easily read off from the diagrammatic representation. The statements "system X
is two-particle reducible" and "system X fulfills the YBE" are therefore equivalent. We have
seen in the last section that two-particle reducibility is a key property of all Bethe solvable
systems, a fact that is also encoded in the fundamental commutation relation of the Lax
operator.

The Lax operator also has a natural geometric interpretation as a connection along the
spin chain. Consider the vector

1
Py = @g) ,  yL? € H, fermion operators (3.1D)
n

in 1, ® V. The Lax equation defines the parallel transport between the sites n and n + 1:

Yni1 = Luthy. (3.12)

The transport from 77 to n, + 1 is given by the ordered product of Lax operators over all
sites in between:
T324(A) = Lyya(A)Lyy—1,0(A) ... Ly a(A). (3.13)

nya

The full product over the entire chain is the monodromy around the circle:
Tra(A) =Lra(A)Lp—14(A) ... L14(A) € End(H® V). (3.14)

T1.(A) describes the transport of spin around the circular chain. In the following, we will
drop the label L and write T, when referring to the monodromy matrix.
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T, acts on the Hilbert space of the full chain, just as the integrals of motion. We will see
in the following that it is the generating object for spin, the Hamiltonian among others. In
the following it will be convenient to express T, as a (2 x 2) matrix in V:

A(A) B(A)

T,(A) = (C(A) D(A)>, A, B, C, D € End(H). (3.15)

The FcRr for T,(A) is given by

Rﬂlﬂz (/\ - ‘u)Ta] (A)Tﬂz(y) = Taz (.”)Ta] (/\)th,az ()t - V)/ (3'16)

which has again the form of the YBE.

Exercise: Verify the FCR for T,(A).

Let us now begin to extract the observables of the xxX; /» chain from T,(A). T,(A) is a
polynomial in A of order L:

Ta(A) = AP +idb 1Y (S* @ o) +.... (3.17)

We see that the total spin appears in the coefficient of the second highest degree. Next, we
will look for the Hamiltonian. In order to do so, we take the trace of T,(A) on the auxiliary
space V:

t(A) = Tra[T,(A)] = A(A) + D(A). (3.18)

This is the so-called transfer matrix. Via the FCR Eq. (3.16), we find that then traces
commute for different values of the spectral parameter:

[t(A), t(p)] = 0. (3.19)

Also t(A) is a polynomial in A of order L:
L2
HA) =201+ Y QA (3.20)
1=0

It produces L — 1 operators Q; on #, which via the commutator of ¢(A) Eq (3.19) we find
to be commuting,

[Q1, Qu] = 0. (3.21)
In the following, we will make use of the fact that the point A = 1/2 is special:
Ln’a(i/z) — inn’a. (3‘22)
The relation 4
ﬁLM(A) =T, (3.23)
holds for any A. Therefore
To(i/2) = i*TI T 1. .. 113, (3.24)
= i' T 05 ... TIp 1 LT, (3.25)

Taking the trace over the auxiliary space we find

t(i/2) = itu, (3.26)
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where we defined the shift operator
u-= H1,2H2,3 . HL—l,L (327)

in H which simultaneously shifts all spins by one site and thus corresponds to the rotation
of the chain by one site. Take the position variable X, on site n:

XU =UX;_1. (3.28)

Since the permutation operator fulfills IT* = IT and I1> = 1, we have U*U = UU* =1, i.e.
U is unitary. Therefore
u-'x,u = X,_1. (3.29)

We can use U to introduce a new observable, namely the momentum P. By definition, P
produces an infinitesimal shift. On the lattice, this translates to a shift by one lattice site:

e’ =U. (3.30)
We now proceed to expand #(A) around A = i/2.
d

o Ta(A) ifp =07 ;nm Ty T, (3.31)
where the hat indicates that the factor is absent. Taking the trace over V,
it()\ﬂ =it Y T, 10 I (3.32)
ax A=ij2 = 4 12 Hp—1ppr-- Hpo1r. .

Now we multiply by #(A)~1:

d

dA

-1 .
(A)E(A) ‘A:i/2 = alr1t(/\)\A:l,/2 = —1;Hnln+1. (3.33)
As we have seen back in Eq. (2.1), we can express the Hamiltonian in terms of the
permutation operator, so we find that

id L
We have thus seen that H is indeed part of the family of L — 1 commuting operators
generated by the transfer matrix. One component of the total spin, e.g. S3, completes this
family to a family of L commuting operators. Since the underlying classical model has L
degrees of freedom, this means that it is integrable.

(3.34)

Bethe ansatz equations for the XxX;,, spin chain. We are now ready to connect to the
main result of the last section, namely the Bethe ansatz equations. As the Hamiltonian
appears as a coefficient in the expansion of the transfer matrix at A = i/2,

tA) =itU = LY (A —i/2)U(2H + L) + O((A —i/2))?, (3.35)

the eigenvalue problem for H is solved by diagonalizing +(A) = A(A) + D(A). We will
need the following relations between the quantities A, B, C, D which form the matrix
representation of the monodromy matrix, see Eq. (3.15)), which are derived from the FCR
using explicit matrix representations:

[B(A), B(n)] =0, (3.36)
AMB(p) = f(A —u)B(u)A(A) + g(A = u)B(A)A(n), (3.37)
DA)B(p) = h(A — pu)B(u)D(A) + k(A — u)B(A)D(p), (3.38)
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where
A—i '
fA—u) = 1 Z, gA—p) = % (3.39)
A+i -
WA — ) = ;Z, KA —p) =7 (3.40)

The full set of commutation relations is symmetric under the exchange A <+ D, B < C,
which corresponds to switching all the up and down spins on the chain.

A(A) + D(A) has to be diagonal on the eigenstates, while C(A) and B(A) act as raising
and lowering operators. A crucial step is to identify a highest weight state. Such a state is
the reference state () with

cA)Q=0. (3.41)

Ta(A) acting on Q) is thus upper triangular. This is true when L, , as given in Eq. (3.4)
becomes upper triangular in V, when acting on a local state w,, € H,:

_ (A+i/2 *
L,(AMwy, = < 0 1 i/2> Wy, (3.42)
This is the case when ¢/ w, = 0, so we can identify w, = | 1), and
L
Q=QRQuwu=|[1...1), (3.43)

just as we have seen already earlier on when studying the coordinate Bethe ansatz. Acting
with the monodromy matrix on (), we find

T,(A)Q = <”‘L(()/\) 5{@) 0, (3.44)

with
a(A) =A+1i/2, S(A)=A—i/2. (3.45)

We see thus that () is an eigenstate of A(A) and D(A) and so also of ¢(A). All other
eigenvectors can be obtained from () by acting with the lowering operator B(A) on it. We
will therefore be looking for eigenvectors of level N of #(A) of the form

®({A1,...,An}) = B(A1) ... B(AN)QL (3.46)

Different orderings of the B(A;) lead to the same eigenstate due to Eq. (3.36). ®({A4,...,An})
is only for certain values of the Ay,..., Ay an eigenvector of {(A). Requiring it to be an
eigenvector leads to a set of algebraic conditions on the parameters Ay, ..., Ay. We will
now act with A(A) and D(A) on (3.46) and use the relations (3.37) and (3.38) to commute
them through the B(A;). The result has the form

N — A )w
(é&) B(A1)...B(AN)Q = <Ir1f§1{z$ —?»3558&))) B(A1)... B(An) O

where the first term already has the right form of an eigenvector of A(A) and D(A), while
we lumped all the rest into the expressions My, Nj. Our goal is to find conditions on the {A}
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that will make terms of the form YN | (M (A, {A}) + Nk(A, {A}))B(A1) ... B(Ah) ... B(AN)B(A) Q
disappear. It is easy to determine M;, N; from the relations (3.37)) and (3.38)), e.g.

N

My (M, {A}) = g(A = A1) T T F(A = A1) ab(Aq). (3.48)

k=2

From the commutation relation (3.38)), we learn that we can simply substitute A; with any

Ak, SO
N
M;j(A1,{A}) = g(A = AN TTF (A7 = A) & (A)). (3.49)
k#j
Similarly,
N
Ni(A1, {A}) = k(A = A) TTh(A; — M) 85 (A). (3.50)
k#j

Note that g(A — A;) = —k(A — A;). We find that

(A(A) +D(A))@({A}) = A(A {A})DP({A}) (3.51)

for N N
AA{AY) ="M T FA=A)+ 8" M) ] h(A = A)) (3.52)

j=1 j=1

if the set {A} satisfies the equation

Hf = Ak Hh = M) 6E(A)). (3.53)

k#j k#j

Using the explicit expressions (3.39) and (3.45), this is the Bethe equation

-\ L
A-+Z> Aj— A +i
ST —Hi (3.54)
(Af—é ok N M

In other words, we have recovered by algebraic means the exact expression of Eq. (2.52)),
which is naturally the way it should be, given that we have studied the same system. The
set {A} is called the Bethe roots and the expression (3.46) the Bethe vector.

Let us now study the properties of the eigenvectors (3.46), such as their spin, momentum
and energy.

Spin. Taking y — oo in the YBE (3.7)) and representing the monodromy in terms of spin
operators using Eq. (3.3)), we find

[T.(A), 30" +S*] =0, (3.55)
which expresses the su(2) invariance of T,(A) in H ® V. In particular, we have
[$%,B] = —B, [ST,B] = A—D. (3.56)
We know that for the reference state ),

S]]

Q. (3.57)
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Q) is thus a highest weight state for the spin operator S*. Applying the relations Eq. (3.56))
to the Bethe vectors, we find

O({A}) = (5~ )<I>({A}), (3.58)
s+q> ({A}) ZB (A1) i-1)(A(A}) = D(A)B(Aj41) - .. BIAN)Q (3.59)
= Zok {A})B(A1)...B(Ak)...B(Aj11) ... B(An)QL. (3.60)

Along the same lines as we have derived the Bethe equations, one can show that the
coefficients Oy all vanish if the {A} fulfill the Bethe equations (3.54). The Bethe vectors
are thus all highest weight states of the spin operator.

Since the S3 eigenvalue of the highest weight state must be non-negative, we must have
N < L/2. The spectrum of H is degenerate under the exchange of all spin up and spin
down states, so effectively the whole range is covered.

Momentum. Recall that ¢(i/2) = i"U. Using Eq. (3.52)), we find
Aj+i/2

A(i/2,{A}) = H —75 (3.61)
Taking the logarithm for the momentum,
N oA+i/2
_ j
where we can define Atif2
AU
p(Aj) = —iln Yy (3.63)

We see that the momentum is additive and that each A; has momentum p(A;).

Energy. The same is true for the energy. Using the expression for H we found in Eq. (3.34),
we find

D({A}) = Ze D({A}), (3.64)
with
1 1

We see thus that it makes sense to use a quasiparticle interpretation for the spectrum of
observables on the Bethe vectors. Each quasiparticle is created by B(A), diminishes the spin
S® by one, has momentum p(A) and energy €(A). Of course these are again the magnons
we have encountered in the discussion of Bethe’s original results. As we have the relation

(M) = —;cidAp(A), (3.66)

the A can be interpreted as the rapidity of the quasiparticle.

The Hamiltonian in Eq. corresponds, unlike the case we studied in the last section,
to the anti-ferromagnetic case, where () is not the ground state. If we take instead —H, we
are back in the ferromagnetic case, as before.

We have thus come to a full circle, having recovered by algebraic means all the physical
properties of the XXX, /, chain we had studied via the more physically transparent coordinate
Bethe ansatz.
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Literature. This chapter largely follows lecture notes of Faddeev [1], with some extra
padding here and there.
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Chapter 4. General Spin Chains

Chapter 4

General Spin Chains via the
Algebraic Bethe Ansatz

One of the main arguments for preferring the algebraic Bethe ansatz over the original one
is that it is applicable to a range of more general spin chains. We will study in the following
two generalizations.

The xxx; Chain. One obvious generalization is to study the xxX model, but for general
spin s. Here, the Hilbert space is % = C>*1. Naively, one is tempted to just rewrite the

Hamiltonian Eq. (3.2)),
3L
H=Y Y (SiShi—1) (4.1)
a=1n=1

where we take S% to be in the representation of spin s. The problem with this naive
approach is, that the Hamiltonian (4.1)) is not integrable!

Armed with the knowledge of the last section, we try instead via the ABA. The first
naive attempt involves constructing a Lax operator on H, ® V = C>**! @ C2. To a certain
degree, this works, as the derivation of the BAE works along the same lines as before: the
Lax operator

. 3 . —
Lya(A) = <A Z‘;;S N 1_5;7 Si) (4.2)
satisfies the YBE with the same R-matrix as before, Ry, 4,(A) = La, 4, (A +1/2). We
can define the monodromy and the reference vector ) = @ w;, where w, is now the
highest weight state in C>*1. Also the Bethe vectors are formally the same as before, and
we find the BAE for the roots {1},

Aiis\E O NOA A i
<7 ZS) S A 4.3)

)L]'—iS j#k)\j—/\k—l‘.
This is a natural and obvious generalization of Eq. (3.54). The generalization of the
argument to extract H from ¢ however does not work, as we cannot express the Lax
operator via a permutation operator as in Eq. (3.6), since now H,, and V are not the same.
We must therefore adopt a more general approach and construct a Lax operator for 4, and
V isomorphic.

Take an abstract algebra .4, which is defined via the ternary relation on A ® A ® A

R12R13R23 = Ra3R13R12, (4.4)
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where R is a universal R—matrix acting on A ® A and the labels indicate on which of the
three factors of A ® A ® A R acts:

Riz =R &1, Ry =1 R, (4.5)

etc. A has a family of representations p(a, A) parametrized by a discrete label a and a
continuous label A. For the xxx model, A is the so-called Yangian, named by Drinfeld after
C.N. Yang. The Yangian is another example of a quantum group, it has the structure of
an infinite-dimensional Hopf algebra. Most generally speaking, it is a deformation of the
universal enveloping algebra U(a[z]) of the semi-simple Lie algebra of polynomial loops of
the semi-simple Lie algebra a. We will however not work at this level of generality. The
definition via the YBE (4.4) works for the Lie algebra a = gl(n) and is thus sufficient for
our needs.

Concretely, we can obtain the Lax operators via the evaluation representation of the
universal R-matrix:

Lua(Ap) = (p(a,A) @ p(n, 1)) R = R (A —p), (4.6)

where p(a,A) is a representation of the Yangian of su(2) and the discrete label a =
0,1/2,1,... is the spin label. We can recover our original YBE Eq. for spin 1/2 from
Eq. by applying the representations p(1/2,A) ® p(1/2, u) ® p(s, o), setting o = 0 and
making the identifications

Rﬂlrllz (A) = Rl/z,ln()\)/ Ln,al()‘) = Rl/2,s (A) (4-7)

In order to study the general case of spin s, it is most convenient to cast the YBE Eq. (4.4)
via permutations into the form

R12R32R31 = Ra1RaR1s. (4.8)

To this YBE, we apply the representation p(s1, A) @ p(sz, #) ® p(1/2,0), where s; labels the
local Hilbert space H, and s, labels the auxiliary space V. This leads to the relation

ROE(A — )RV (7 — )RV (0= A) = RY21 (0 — \)RY2% (0 — )RV (A — ).
4.9

For the case we are interested in where 7, and V have equal dimension, namely s; = s,
we can construct a new fundamental Lax operator L, ¢(A) from the YBE above. To do so,
let us denote the two sets of spin operators labeled by s; and s, by S* and T*, and their
Lax operators as

Ls(A) = A+i(S,0), Lr(A) =A+i(T,0), (4.10)

where (S,0) = Y, S*c™ and likewise for T, along the lines of the spin 1/2 case. We will
search for R*12()) of the form

R%(1) = Ty ur((, ), ), (4.1)

where I, , is the permutation operator in C**! @ C>*1, I1(S,o)I1 = (T, ), and r is an
operator which depends on the Casimir

C=(5T)=) ST (4.12)

and A. Plugging Ls, Lt and R%*2 into Eq. (4.9)), we can rewrite it as
(= i(T,0) (1 — i(S,0)r(A — ) = 1A — ) — (T, A —i(S, 7). (413)
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Using the property of the Pauli matrices
(T,0)(S,0) = (T,S)+i((SxT),0), (4.14)

where (S x T)* = e,msﬁ T7, and the fact that the Casimir commutes with everything, we
can turn Eq. (4.14) into

(AS* 4+ (S x T)")r(A) =r(A)(AT* 4+ (S x T)*). (4.15)
It is enough to consider one out of the three equations above, e.g. the combination
(AST 4+i(T3ST = SPT™))r(A) = r(A)(ATT +i(T3ST — S3T™T)). (4.16)

We will switch to the variable | instead of (S, T) and use the irreducibility of the represen-
tations of S and T:

(SH+T)> =8> +T>+2(S,T) =25(s +1) +2(S,T) = J(J+ 1), (4.17)

where | has eigenvalue j in each irreducible representation D; in the Clebsch-Gordan
decomposition

2s
Ds® Ds = )_ D;. (4.18)
j=0

Remember that we are doing all of this to find an operator r in order to construct R
in the form Eq. (4.11). To find r as a function of ], we use Eq. in the subspace of
highest weights in each D, i.e
Tt +ST=0. (4.19)
We can do this because
[T3sT — 3T+, TT 45T =0, (4.20)

which means that the combination T3S — S3T+ appearing in Eq. (4.16) does not take you
out of the subspace of highest weights. In this subspace, ] = S® + T2, so Eq. (4.16) reduces
to

(AST +i]ST)r(A,]) = (A, J)(—=AST +i]ST). (4.21)

Using STJ = (J —1)S™, we find
A+i)r(A, J—=1) =r(A, ])(=A+1i]S), (4.22)
which is a functional equation for r(A, J). It is solved by

r(A,]):?UHHA)

T(J+1-i0) (4.23)

where the I'-function appears (remember I'(n + 1) = n!). It is normalized such that
r(0,]J) =1 and r(—A, J)r(A,J) = 1. In the case we are interested in, ] = 0,1,...,2s, but in
principle (A, J) can be used in all generality with s € C. After all of this, we can now plug

Eq. (4.23) into Eq. (4.11) and rewrite the FCR as
Rf1,f2 (/\ - .u)Ln,ﬁ (A)Ln,fz(l’l) = Ln,fz(l’l)Ln,ﬁ (/\)Rflffz ()‘ - V) (4.24)

We finally have an expression where the auxiliary spaces V;, V, are isomorphic to the local
Hilbert space H, = C**!. From here on, we can now reproduce the reasoning used for
the case s = 1/2. We can define the momodromy

Te(A) = Ly p(A)Lp 15(A) ... Lyg(A) (4.25)
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and the transfer matrix

tf(}\) = TI'fo()L). (426)
We find again

[tr(A), te(p)] = 0. (4.27)

Using Eq. (4.4) with s; = s, = s, R/2°(A — u) as R-matrix and R'/?*(u), R**(A) as Lax
operators, we find commutativity also for the families ¢;(A) and t,(A):

[tr(A), ta(p)] = 0. (4.28)
To derive the BAE, we use f,(A) (i.e the case s = 1/2), while for the observables, we use
tf()\)
tr(0) =U =e¢", (4.29)
d L
H=ifin tr(A) a0 = Y Huns1, (4.30)
n=1
H 4 nr(, )] 4.31)
nn+l — la nr ]/ A=0/ .
where ] is constructed via the local spins S, S ;:
JJ+1) = 22 (S4S%.,1) +2s(s + 1). (4.32)
We get thus
Hn,n+1 = _2¢(]+ 1)/ (4.33)

where ¢ is the logarithmic derivative of the [—function. Forn € N, ¢(1+n) =Y ; 1 — 7,
where < is the Euler constant. H, ,.; can be expressed in terms of a polynomial in

nn+1 sz Sy Sz+1

H, n+1 = Z Ck n, n+1 f25 (Cn,n+1 )1 with (4.34)

25 1 X —x
fas(x) = Z Z - Y H , Where (4.35)

=1 1=0 Xj — X
x; ( (I+1)—2s(s+1)). (4.36)
Let us write this down explicitly for the case of s = 1. Here, c; = —c3, so
H = Z n n+1 S Sn+1) ) (437)

This generalization from the spin 1/2 Hamiltonian one could not have easily guessed!
Last, we give the eigenvalues of the fundamental transfer matrix ¢;(A) on the Bethe vector

D({A}):

l

)L {A}) thm H cm(A — Ag). (4.38)

k=1
To extract the energy and the momentum of the quasiparticles, it is enough to know

(4.39)

0y (0) =0, m=-s,—s+1,...,s—1,
065(0) — 1,
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and A
—is
cs(A) = Py (4.40)
With this, we get
A—is s
p(A) = _1ln/\—i—is' e(A) = B E) and (4.41)
1d

We see that the energy and momentum of the magnon generalize in a straightforward
way from the case of spin 1/2, while this is not at all the case for the Hamiltonian. The
generalization of the xxx spin chain to spin s is one of the important achievements of the
ABA.

Spin chains with higher rank symmetry algebra. Another obvious way in which the
xxx spin chain can be generalized is by choosing a symmetry algebra with rank » > 1, e.g.
gl(n), where r = n — 1. In this case, the nested Bethe ansatz (Kulish, Resetikhin) must be
applied. It works by reducing the rank r case to the one of rank » — 1, and so on, until we
arrive again at rank one. Given the time constraints of this lecture series, I will merely
sketch the method to give the reader a general idea of how it works.

For each of the r — 1 steps, a new monodromy and transfer matrix are constructed. In
the first step, we decompose T(A) as

_ (tu(d) BUQ) r
T(A) = (C(l)(/\) TO()) € End(C"), (4.43)
where B()) is a row vector in C’, C(V) is a column vector in C’, and T(® (1) is a matrix in
End(C"1). T®(A) gets decomposed in the same way in the next step. Each step gives

rise to a separate Bethe vector and a set of rapidities /\](.a) ji=1,...,Noa=1,...,r. We

start with an A, chain with L sites, where Nj is the number of pseudo-excitations. In
the next step, we get an A, 1 with L 4+ Nj sites. The additional Nj sites correspond to
fundamental representations of A, 1. Now we need to find the eigenvectors of the A, 1 by
diagonalizing the new transfer matrix. A new highest weight state needs to be identified,
etc. This leads now to an A,_» chain with L + N; + N; sites, and so on. The rank r chain
differs from the case we have studied so far in that

* it has r different particle species, with particle numbers Ny, ..., N;.

* for each species a, there is an effective length of the chain L,,a =1,...,r.

(a)

* each particle species has its own set of rapidities A j

* each particle species has its own twist parameter #(?) for the boundary conditions.

The simple spin chain interpretation we had for the rank one case thus gets somewhat
stretched by this generalization.
Let us end by giving the nested Bethe equations:

Loy i@ N A@ )y icab
I1 LZS’Z“) =TT T1 ORENC : (4.44)
n=1A; — isy =1 =1 A=A - e

(i,a)#(jb)

where i = 1,...,N,, the spin operators are realized as generators of A, and C% is the
Cartan matrix of A,.
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Chapter 4. General Spin Chains

Literature. This chapter largely follows lecture notes of Faddeev [1]. The nested Bethe
ansatz was first discussed in [2].
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Chapter 5

Relations between Spin Chains and
Supersymmetric Gauge Theories

Gauge theories are the foundation of our understanding of nature. Of the fundamental
interactions, the electroweak force and QCD (strong interaction) are described by quantum
gauge theories. Understanding gauge theories as well as possible is a top priority. Despite
decades of research, there are still open problems remaining, in particular regarding their
non-perturbative behavior and confinement. One way of rendering quantum gauge theories
more tractable is to introduce supersymmetry. We will be using supersymmetry as a tool to
gain insights into gauge theories, as a kind of laboratory for studying them. Supersymmetry
constrains a theory and makes it well-behaved. It has a number of desirable mathematical
properties, such as e.g. non-renormalisation theorems and protection of certain quantities
from quantum corrections. The more supersymmetry a theory has, the more constrained it
is, but a the same time, the less realistic it is from a phenomenological point of view (e.g.
N = 4 super Yang-Mills theory).

In recent years, N = 2 gauge theories have been a focus of interest. Seiberg and Witten
(1994) showed that NV = 2 sym theory can be solved completely at the quantum level. It is
possible to construct an exact low energy Lagrangian and the exact spectrum of BPS states.
It displays moreover a strong/weak duality and has a rich algebraic structure surviving
quantum corrections.

In the following, we will be particularly interested in deformations of supersymmetric
gauge theories that preserve some of the supersymmetry and in particular preserve its
useful properties. There will be two types of deformation of relevance:

* mass deformations (e.g. twisted mass deformations in 2D).
* ()-type deformations.

In the O)-deformation, deformation parameters €; are introduced which break Poincaré
symmetry. It was introduced by Nekrasov (2004) as a calculational device for a localization
calculation of the instanton sum of A/ = 2 sYM. However, it is also interesting to study
(—deformed gauge theories in their own right.

We will see in the following that these deformed gauge theories are intimately connected
with integrable systems.

The relations between integrable models and supersymmetric gauge theories are a
very interesting subject and active research topic. There are several examples of these
connections, e.g.

* 2d gauge/Bethe correspondence: N = (2,2) gauge theories in 2d are related to
Bethe-solvable spin chains.
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Chapter 5. Spin Chains and Supersymmetric Gauge Theories

* 4d gauge/Bethe correspondence: Q)—deformed N = 2 supersymmetric gauge theories
are related to quantum integrable models.

* Alday-Gaiotto-Tachikawa (AGT) correspondence: ()-deformed super Yang-Mills theory
in 4d is related to Liouville theory.

In these lectures, we will concentrate on the 2d gauge/Bethe correspondence (Nekrasov—
Shatashvili). We will match the parameters of a spin chain to those of N = (2,2) su-
persymmetric gauge theories. It will turn out that the full (Bethe) spectrum of the spin
chain corresponds one-to-one to the supersymmetric ground states of the corresponding
gauge theories. We have acquired the necessary knowledge on the spin chain side of the

correspondence:
Spin Chain: Supersymmetric gauge theories:
* parameters of a general spin * N = (2,2) gauge theories
chain

e twisted mass deformation

* Bethe ansatz equations
* low energy effective action, in particular

* Yang-Yang counting the effective twisted superpotential

function .
* equation for the ground states

Before we can discuss the relations between the two sides, we need to familiarize
ourselves with the necessary concepts in 2d supersymmetric gauge theory. In order to do
so, we follow closely sections 12.1, 12.2, 15.2 and 15.5 of the book Mirror Symmetry by
K. Hori et al [1]][]

Gauge/Bethe correspondence for the XxX; ,, spin chain. Recall the Bethe ansatz equa-
tion for the N-magnon sector, Eq. (2.52)):

-\ L
Ai+ 35 NAi—Aj+i
. = —F) i=1,...,N. (5.1)
(Ai—é EAZ‘_/\]‘_Z

j#i

We have seen that it is expressed equivalently by
2mdY(A) — 1, (5.2)

where Y us the Yang-Yang function, given explicitly by

N
ziz A —i/2)(log(As —i/2) — 1) — (A +1/2)(log(—Ai — i/2) — 1)
1:1 N N . (5.3)
- — (/\i—/\j—f—i)(log()ti—)\j—i-i)—1)—|—2/\]’ <n]'—).
ij—1 =1 2n

This result we now want to compare with the N = (2,2) gauge theory with gauge group
U(N), one adjoint mass 7% and L fundamental and anti-fundamental fields Q;, Q; with

LThis actually takes a good two lectures to cover, but as I cannot really improve on the book, I see little gain
in re-typing the material here.
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E A

gauge —

theory
g+

= — | sue

xf—r multiplet
S
0 1 2 3 4 N

Figure 5.1: The su(2) symmetry on the XXXj /» spin chain for L = 4. The horizontal arrows
show the action of the S* operators, changing the magnon number N, preserving the
energy. The spectrum can be organized into multiplets of su(2) (horizontal box) or by
magnon number (vertical box).

f

twisted masses 7if, 7if. The effective twisted superpotential for this theory is

~ | NI R ) y g
Wette =53, ) (0i+ mf) (log(o; +mf) — 1) — (07 + fiif) (log(—0; + k) — 1)
TiAk= 5.4
1 Y . - N :
= Y (0i — 0j + m*Y) (log(c; — o + m*Y) — 1) —it } oy,
i,j=1 j=1

where the first term comes from the fundamental fields, the second from the anti-fundamental
fields, and the third from the adjoint fields. Comparing with Eq. (5.3), we find the two
expressions to be the same with the following identifications:

0= A, N=N, (5.5)
it = —i/2, mf = —i/2 (5.6)
e =g, L=1L, (5.7)
= Lo +in (5.8)

The magnon number N corresponds to the number of colors of the U(N) gauge theory,
while the number of flavors corresponds to the length of the spin chain. Since we can
identify Y and W,g, the equations for the spectrum of the N-magnon sector and for the
ground states of the U(N) supersymmetric gauge theory are identified as well. The super-
symmetric ground states and the N—particle Bethe states are in one-to-one correspondence,
this is the main statement of the gauge/Bethe correspondence..

We have seen that in order to obtain the full spectrum of the spin chain, we must solve
the Bethe equations for all magnon subsectors, N = 0,1, ..., L. Taking the correspondence
seriously, we should thus also consider gauge theories with different numbers of colors
together, i.e. U(1),...,U(L). Let us consider the action of the symmetry group of the
integrable model. For concreteness, we take an XxX;,, spin chain of length L = 4, see
Figure We see that the S* operators of su(2) act horizontally between states with
different N, preserving the energy. The full spectrum of the spin chain is thus organized
horizontally into su(2) multiplets. The gauge/Bethe correspondence, on the other hand,
identifies states in an N-magnon subsector with the ground states of a gauge theory, slicing
the spectrum up vertically. The action of su(2) is thus a symmetry between gauge theories
with different numbers of colors. This can bee seen with an obvious example: for the spin
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Figure 5.2: Example quiver diagram for the Gauge/Bethe correspondence. Gauge groups
are labeled in black, matter fields in blue, the corresponding twisted masses in red.

chain, the physics is the same if we use the reference state |()) = | 1 ... 1) or instead
| L ... 1). The sector with N down spins starting with |(}) and the one with L — N up spins
starting from the reference state | | ... |) are the same. The spectrum of the spin chain has
therefore a manifest N, L — N symmetry. This equivalence is reflected on the gauge theory
side as the Grassmannian duality. The vacuum manifold of the low energy effective gauge
theory corresponding to the xxX;,, chain is the cotangent bundle of the Grassmannian
T*Gr(N, L), where the Grassmannian is the collection of all linear subspaces of dimension
N of a vector space of dimension L:

Gr(N,L) = {W c C'|dimW = N}, (5.9)
T*Gr(N,L) = {(X,W),W € Gr(N, L), X € End(C")| X(C') c W, X(W) = 0}. (5.10)

The Grassmannian duality states that there is an isomorphism between Gr(N, L) and
Gr(L — N, L), thus linking the ground states of the low energy U(N) and U(L — N) gauge
theories.

The integrable structure of the spin chain remains hidden on the gauge theory side
of the correspondence as long as the gauge theories with different numbers of colors are
considered separately. A mathematical framework that unifies these gauge theories in a
meaningful way is Ginzburg’s geometric representation theory.

We have studied only the simplest example of the correspondence involving the Xxx; /»
spin chain, but the scope of the gauge/Bethe correspondence is much larger. So let us have
a quick look at the general dictionary between gauge theory and spin chain parameters,
see Table

In general, we are dealing with a quiver gauge theory, which can be summarized by a
graph, see Fig. The black nodes represent gauge groups, arrows between the nodes
correspond to bifundamental fields, arrows from a node to itself indicate adjoint fields,
white nodes represent flavor groups and the dashed arrows between flavor and gauge
nodes represent fundamental and anti-fundamental fields.

Using Table the values of the twisted masses that we recovered from the correspon-
dence can be traced back to the Cartan matrix of su(2),

W ( 2 —1)
Cco — , (5.11)
1 2

the fact that we had the fundamental representation at every site, so Ay = 1, and the
absence of inhomogeneities.
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gauge theory

integrable model

number of nodes in the
quiver

gauge group at a—-th node

effective twisted
superpotential

equation for the vacua
flavor group at node a

lowest component of the
twisted chiral superfield

twisted mass of the
fundamental field

twisted mass of the
anti—-fundamental field

twisted mass of the adjoint
field

twisted mass of the
bifundamental field

Fl-term for U(1)-factor of
gauge group U(N,)

7 r rank of the symmetry group
U(N,) N, number of particles of species a
Wei (0) Y(A) Yang-Yang function

Bethe ansatz equation

U(Ly) L, effective length for the species a
O'i(a) /\fu) rapidity
77~1fl({a) é Al + 1/,5‘1) h1ghest wg1ght of the representa-
tion and inhomogeneity
_g(a) iana_ . (a) highest weight of the representa-
m'y AL — v . . .
tion and inhomogeneity
rﬁadj(”) ican diagonal element of the Cartan
2 matrix
ﬁlb(ab) icab non-diagonal element of the Car-
2 tan matrix
2 boundary twist parameter for
T 9

particle species a

Table 5.1: Dictionary in the Gauge/Bethe correspondence.
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Literature. The gauge theory prerequisites are explained in sections 12.1, 12.2, 15.2 and
15.5 of the book Mirror Symmetry by K. Hori et al [1].

The 2d gauge/Bethe correspondence was introduced in [2, 3]]. The dictionary is

explained in detail in [4, 5].
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